Faster Computation of the Tate Pairing

نویسندگان

  • Christophe Arene
  • Tanja Lange
  • Michael Naehrig
  • Christophe Ritzenthaler
چکیده

This paper proposes new explicit formulas for the doubling and addition steps in Miller’s algorithm to compute the Tate pairing on elliptic curves in Weierstrass and in Edwards form. For Edwards curves the formulas come from a new way of seeing the arithmetic. We state the first geometric interpretation of the group law on Edwards curves by presenting the functions which arise in addition and doubling. The Tate pairing on Edwards curves can be computed by using these functions in Miller’s algorithm. Computing the sum of two points or the double of a point and the coefficients of the corresponding functions is faster with our formulas than with all previously proposed formulas for pairings on Edwards curves. They are even competitive with all published formulas for pairing computation onWeierstrass curves. We also improve the formulas for Tate pairing computation on Weierstrass curves in Jacobian coordinates. Finally, we present several examples of pairing-friendly Edwards curves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast computation of Tate pairing on general divisors of genus 3 hyperelliptic curves

For the Tate pairing computation over hyperelliptic curves, there are developments by DuursmaLee and Barreto et al., and those computations are focused on degenerate divisors. As divisors are not degenerate form in general, it is necessary to find algorithms on general divisors for the Tate pairing computation. In this paper, we present two efficient methods for computing the Tate pairing over ...

متن کامل

Fast computation of Tate pairing on general divisors for hyperelliptic curves of genus

For the Tate pairing implementation over hyperelliptic curves, there is a development by DuursmaLee and Barreto et al., and those computations are focused on degenerate divisors. As divisors are not degenerate form in general, it is necessary to find algorithms on general divisors for the Tate pairing computation. In this paper, we present two efficient methods for computing the Tate pairing ov...

متن کامل

Faster Computation of Tate Pairings

This paper proposes new explicit formulas for the doubling and addition step in Miller’s algorithm to compute the Tate pairing. For Edwards curves the formulas come from a new way of seeing the arithmetic. We state the first geometric interpretation of the group law on Edwards curves by presenting the functions which arise in the addition and doubling. Computing the coefficients of the function...

متن کامل

Efficient Computations of the Tate Pairingfor the Large MOV Degrees

The Tate pairing has plenty of attractive applications, e.g., ID-based cryptosystems, short signatures, etc. Recently several fast implementations of the Tate pairing has been reported, which make it appear that the Tate pairing is capable to be used in practical applications. The computation time of the Tate pairing strongly depends on underlying elliptic curves and definition fields. However ...

متن کامل

Faster Pairing Computation on Jacobi Quartic Curves with High-Degree Twists

In this paper, we propose an elaborate geometric approach to explain the group law on Jacobi quartic curves which are seen as the intersection of two quadratic surfaces in space. Using the geometry interpretation we construct the Miller function. Then we present explicit formulae for the addition and doubling steps in Miller’s algorithm to compute Tate pairing on Jacobi quartic curves. Both the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009